B. Sc. in Medical Laboratory Technology

SYLLABUS
Study & Evaluation Scheme
B.Sc. MLT- I Semester

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Code</th>
<th>Subject</th>
<th>Period</th>
<th>Credit</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>BML - 101</td>
<td>Human Anatomy-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BML - 102</td>
<td>Human Physiology-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BML - 104</td>
<td>Biochemistry-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>BML – 105</td>
<td>Health Education & Health</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MPH 104)</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BML- 191</td>
<td>PC Software Lab</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(BCA 191)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BML - 192</td>
<td>Practical: Human Anatomy-I</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>BML - 193</td>
<td>Practical: Human Physiology-I</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>BML - 194</td>
<td>Practical: Biochemistry-I</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>03</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study & Evaluation Scheme
B.Sc. MLT- II Semester

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Code</th>
<th>Subject</th>
<th>Period</th>
<th>Credit</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>BML -201</td>
<td>Human Anatomy-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BML -202</td>
<td>Human Physiology-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BML- 203</td>
<td>Biochemistry-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>BML-204</td>
<td>Bio Medical Waste Management</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BML -291</td>
<td>Human Anatomy-II</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BML -292</td>
<td>Human Physiology-II</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>BML -293</td>
<td>Biochemistry-II</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>BML -294</td>
<td>Communication Lab</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Sl.</td>
<td>Course Code</td>
<td>Subject</td>
<td>Period</td>
<td>Credit</td>
<td>Evaluation Scheme</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>BML- 301</td>
<td>Pathology-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BML- 302</td>
<td>Clinical Haematology-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BML- 303</td>
<td>Microbiology-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>BML - 304</td>
<td>Immunology & Serology-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>BML - 305</td>
<td>Histopathology & Histotechniques -I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>BML- 391</td>
<td>Clinical Haematology-I</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>BML- 392</td>
<td>Microbiology, Immunology & Serology - I</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>BML - 393</td>
<td>Histopathology & Histotechniques -I</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
<td>6</td>
<td>06</td>
</tr>
<tr>
<td>Sl.</td>
<td>Course Code</td>
<td>Subject</td>
<td>Period</td>
<td>Credit</td>
<td>Evaluation Scheme</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>Internal</td>
</tr>
<tr>
<td>1</td>
<td>BML-401</td>
<td>Pathology - II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BML-402</td>
<td>Clinical Haematology-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BML-403</td>
<td>Microbiology-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>BML-404</td>
<td>Immunology & Serology-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>BML-405</td>
<td>Histopathology & Histotechniques -II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>BML-491</td>
<td>Clinical Haematology-II</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>BML-493</td>
<td>Microbiology, Immunology & Serology – II</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>BML-494</td>
<td>Histopathology & Histotechniques -II</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
<td>03</td>
<td>09</td>
</tr>
</tbody>
</table>
Study & Evaluation Scheme
B.Sc. MLT - V Semester

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Code</th>
<th>Subject</th>
<th>Period</th>
<th>Credit</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BML - 501</td>
<td>Immunohematology & Blood Banking</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BML - 502</td>
<td>Clinical Enzymology & Automation</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BML - 504</td>
<td>Parasitology & Virology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BML - 505</td>
<td>Diagnostic Cytology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BML - 506</td>
<td>Principles of Lab Management & Medical Ethics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BML - 591</td>
<td>Clinical Enzymology</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>BML - 592</td>
<td>Parasitology & Virology</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>BML - 593</td>
<td>Diagnostic Cytology</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
<td>03</td>
<td>09</td>
</tr>
</tbody>
</table>

B. Sc. in Medical Laboratory Technology
Study & Evaluation Scheme
B.Sc. MLT - VI Semester

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Code</th>
<th>Subject</th>
<th>Period</th>
<th>Credit</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>BML- 601</td>
<td>Clinical Endocrinology & Toxicology</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>BML- 602</td>
<td>Advanced Diagnostic Techniques</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>BML- 603</td>
<td>Diagnostic Molecular Biology</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>BML- 691</td>
<td>Clinical Endocrinology & Toxicology</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>BML- 692</td>
<td>Advanced Diagnostic Techniques</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>BML- 693</td>
<td>Diagnostic Molecular Biology</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>BML - 686</td>
<td>Internship Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>09</td>
<td>03</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
</tr>
</tbody>
</table>

Total

Note: The evaluation scheme includes both internal and external assessments with a total credit distribution of 800.
B.Sc. MLT- I Semester
Course/Paper: (Human Anatomy-I)
Course Code: BML-101

Learning Objective: The prime concern of this syllabus is to learn the terminology of the subject and basic knowledge of cells & tissues and to understand anatomy of human body. This subject will develop an understanding of the structure and function of organs and organ systems in normal human body.

Unit -I
Terminology and General Plan of the Body, Body Parts and Areas, Terms of Location and Position, Body Cavities and Their Membranes, Dorsal cavity, Ventral cavity, Planes and Sections

Unit –II
Cells: Structure, function and location, Prokaryotic and eukaryotic cells, Cell organelles, Cell division
Tissue, Types, Structure, Location and Function of Epithelial Tissue, Connective Tissue, Muscle Tissue, Nerve Tissue, Membranes, Glandular tissue.
The Integumentary System: structure and function of The Skin, Subcutaneous Tissue

Unit-III
Musculoskeletal System: Basic anatomy of important muscles and bones

Unit-IV
Respiratory system: Basic anatomy of nose, larynx, trachea, bronchi and lungs

Unit – V
Digestive system: basic anatomy of oesophagus, stomach, small intestine, large intestine, liver, gall bladder, pancreas

Learning Outcome: Students will develop a vocabulary of appropriate terminology to effectively communicate information related to anatomy and recognize the anatomical structures included in syllabus.

Suggested Readings:

B.Sc. MLT- I Semester
Course/Paper: Human Physiology-I
Course Code: BML-102

Learning Objective: The prime concern of this syllabus is to integrate basic knowledge of cells, tissues, blood, physiological functions and diseases of system included in syllabus.

Unit-I
Cell physiology: Structure, membrane, transport across cell membrane, Active,
Passive, Organization of the Body, Body Composition, Body Fluid Volumes and its measurement, Diffusion, Osmosis, Tonicity, Homeostasis

Unit-II
Blood-composition, function, cellular component & their function, haemoglobin & anaemia, blood groups and coagulation
Lymphatic system-Composition & function of lymph, lymphatic tissue, Immunity with the role of thymus

Unit-III
Cardiovascular system-general arrange, heart, arteries, veins and capillaries, heart structure and function, cardiac cycle, heart sounds, heart rate, blood pressure, mechanism of circulation, definition of hypertension & shock

Unit-IV
Respiratory system: parts of respiratory system, mechanism of respiration, pulmonary function, pulmonary circulation, lungs volume, Gas transport between lungs and tissues,
Definition of hypoxia, dyspnoea, cyanosis, asphyxia and obstructive airways diseases

Unit- V
Gastrointestinal physiology: Organs of GIT and their structure & function, secretion, digestion, absorption and assimilation, gastrointestinal hormones, physiology of digestion of carbohydrates, proteins & lipids, Structure & function of liver, spleen, gall bladder & pancreas, Jaundice, Cirrhosis & Pancreatitis

Learning Outcome: This subject will develop an understanding of the function of organs and organ systems in normal human body. Students will able to explain the physiological systems of body and also understand the basis of diseases.

Suggested Readings:

B.Sc. MLT- I Semester

Course/Paper: Biochemistry-I

Course Code: BML-103

Learning Objective: This syllabus has been formulated to impart basics knowledge of biochemistry, apparatus, units, equipment, and volumetric analysis in the Clinical Biochemistry.

Unit-I
Introduction to Clinical Biochemistry and role of Medical Lab Technologist , ethics, responsibility, safety measure and hazards in clinical biochemistry lab and first aid in laboratory accidents.
Glassware’s & plastic ware’s used in lab, calibration of volumetric apparatus,
cleaning & care and maintenance

Unit II
Principle, working, care & maintenance and calibration of Weighing balance, Hotplate, Magnetic stirrer, Centrifuges, Incubator, Hot air oven, Colorimeter, Spectrophotometer, Water distillation plant, Deionizers Henderson Hassel balch equation, pH paper, pH meter, method of pH measurement,

Unit-III
Preparation of solution and reagents, normal solution, molar solutions, percent solution, buffer solution, dilutions, w/v, v/v, standard solution, aqueous solutions, concepts of acid and base
Units of measurement: SI unit, reference range, conversion factor, units for measurement of bio metabolite, enzymes, protein, drugs, hormones, vitamins

Unit-IV
Specimen collection and processing of blood, urine & CSF, separation of serum and plasma, deproteinization of sample, Handling of specimens for testing, preservation of specimen, transport of specimen, factors affecting the clinical results, effect of storage on sample

Unit- V
Physical, chemical and microscopic examination of urine, Bence Jones Proteinuria and its clinical significance, qualitative test of urine for reducing sugars, protein, ketone bodies, bile Salt, bile pigments, urobilinogen, occult blood, uric acid, urea and Creatinine, quantitative estimation of 24 hrs urine for protein and their clinical significance.

Learning Outcome: Students will know the basics of reagent preparation, instrument handling and can perform common analytical in Clinical Biochemistry.

Suggested Readings:

B.Sc. MLT - I Semester
Course/Paper: Health Education & Health Communication
Course Code: BML-104

Unit 1:
- Health Education: Principles & Objectives, Levels of Health Education, Educational Methods, Evaluation & Practice of Health Education in India.
- Health Care Reporting, Role of NIC & Other Bodies, Research in Health Education

Unit 2:
- Heath Communication: Basic Concept & Principles of Communication, Definition, Purpose, Types of Communication
• Communication Process, Directions of Communication: Upward, Downward, Lateral, Factors influencing Communication, Barriers of Effective Communication, How to overcome the Barriers

Unit 3:
• Mass communication & Role of Media in health education
• Information Communication Technologies (ICT) in health care and awareness. (Telemedicine & e-health, community radio)
• Future trends in information and communications systems :

Suggested Books:
3. Health Communication: From Theory to Practice, By Renata Schiavo, Published by Jossey Bash.

BML-191 (PC Software Lab)
• Introduction
• MS Windows(Windows ’98 Second Edition)
• Desktop, creation of folders and shortcuts, features of Windows explorer
• Familiarisation and using MS packages – Word, Excel, PowerPoint, basic skills in using these tools. (Version MS-Office’2000)

Books:
1.Introduction to Computers with MS-Office, Leon, TMH
2.Personal Computer Software, EXCEL BOOKS
3.A First Course in Computers 2003, Saxena, VIKAS
5.Windows’98 in easy steps,Harshad Kotecha, Wiley Dreamtech
6.Office 2000 in easy steps, Stephen Copestake, Wiley Dreamtech
7.Windows & MS-Office 2000, Krishnan, SCITECH
8.Trouble Shooting Microsoft Windows,PHI/MSP

BML-192 (Practical Human Anatomy-I)
1. Demonstration of Major organs through models and permanent slides.
2. Demonstration of parts of circulatory system from models.
3. Demonstration of parts of respiratory system from models.
4. Demonstration of digestive system from models.
5. Demonstration of excretory system from models.
6. Demonstration of nervous system from models.
7. Structure of eye and ear
8. Demonstration of structural differences between skeletal, smooth and cardiac muscles.
9. Demonstration of various bones
10. Demonstration of various joints
11. Demonstration of various parts of male & female reproductive system from models

BML-193 (Practical Human Physiology-I)

1. To measure pulse rate
2. To measure blood pressure
3. Demonstration of ECG
4. To perform Hemoglobin by Sahli’s Method
5. To perform Hemoglobin by CMG method.
6. Haemoglobin by CMG method.
7. To perform Total RBC count.
8. To perform total leucocyte count.
9. To perform differential leucocyte count.
10. To perform PCV
11. To calculate Red cell indices.

BML-194 (Practical Biochemistry-I)

1. To study general laboratory safety rules.
2. To demonstrate glasswares, apparatus and plasticwares used in laboratory.
3. Collection of blood sample
4. To separate serum and plasma.
5. Preparation of different percentage solutions
6. Preparation of normal and molar solutions.(0.1 N NaOH, 0.2N HCl, 0.1 M H₂SO₄)
7. Demonstration of photocolorimeter
8. Demonstration of spectrophotometer
9. Demonstration of pH meter
10. Deproteinization of blood sample

B.Sc. MLT- II Semester
Course/Paper: Human Anatomy-II
Course Code: BML-201

Learning Objective: This syllabus is extension of the part-I. The syllabus justifiably divides the body systems into two semesters to ensure complete and comprehensive knowledge of all functionalities of the body.

Unit-I
Cardiovascular system: Basic anatomy of heart and important blood vessels Brief introduction about Lymphatic System

Unit –II
The Nervous System: Basic anatomy of brain and spinal cord, meninges and cerebrospinal fluid, Cranial Nerves

Unit-III
Endocrine System: Brief anatomy of Pituitary, Thyroid, Parathyroid, Pancreas, Adrenal

Unit-IV
Special Senses: Basic anatomy of eye, ear and nose
Unit-V
Genitourinary system: Basic anatomy of kidney and associated organs, male reproductive organs, female reproductive organs

Learning Outcome: This curriculum can stimulate the students to understand the basic anatomy of included system and the resultant unified organization thereupon.

Suggested Readings:

B.Sc. MLT- II Semester
Course/Paper: Human Physiology-II
Course Code: BML-202

Learning Objective: This subject imparts the knowledge of the structure and function of included organs and organ systems in normal human body.

Unit-I
Organs of Excretory System: Kidneys, Nephron, Mechanism of Excretion, Urine formation (Glomerular filtration and Tubular reabsorption), Electrolytes: their balances and imbalances Introduction of acidosis and alkalosis.

Unit-II
Muscle nerve physiology, types of muscles, their gross structural and functional difference with reference to properties.

Unit-III
Nervous system- general organization of CNS, function of important structure and spinal cord, neuron, nerve impulse, type of nerves according to function, Autonomic nervous system- organization & function
Special senses-general organization & functions.

Unit-IV
Endocrine System: Brief introduction about endocrine glands and their secretion, common endocrinological disorder such as diabetes mellitus, hyper & hypothyroidism, dwarfism, gigantism, tetany.

Unit-V
Reproductive System: male & female reproductive organs, sex hormones, secondary sexual characteristics, puberty, spermatogenesis, oogenesis, menstrual cycle, pregnancy, menopause, contraceptive measures.

Learning Outcome: Students will able to understand functioning of various systems included in syllabus as well as diseases mentioned.
B. Sc. MLT- II Semester

Course/Paper: Biochemistry – II
Course Code: BML-203

Learning Objective: This paper is extension of BML-S-104 and which aims at understanding the chemical properties of the bio molecules, their functions and biomedical importance.

Unit-I
Carbohydrates: Classification, function, importance, structure, digestion & absorption. Proteins: Classification, function, importance, structure, digestion & absorption.

Unit-II
Amino acids: Classification, Structure, Properties and Biological functions. Lipids: Classification of lipids, Classification of fatty acids, Saturated & Unsaturated fatty acids, their biological functions, digestion and absorption, introduction of lipoproteins

Unit-III
Enzymes: Definition, Classification of enzyme, Cofactor & Coenzymes, Concept of active sites and general mode of action of enzymes, units for measuring enzyme activity, factor affecting enzyme activity, factor responsible for abnormal enzyme secretion

Unit-IV
Nucleic acids: Structure, Function and types of DNA and RNA, Nucleotides, Nucleosides, Nitrogen bases, purines and pyrimidines and role of Nucleic acid.

Unit-V
Vitamins: classification, function and disease associated with vitamins. Minerals and ions: Requirement, function and biological importance of Calcium, Iron, Iodine, Zinc, Phosphorus, Copper, Sodium and Potassium

Learning Outcome: Students will understand the chemistry, function, and biological importance of carbohydrates, proteins, lipids, nucleic acids, enzymes, vitamins and minerals.

Suggested Readings:
Reference Books:
1. The Book of Hospital Waste Management: Dr. D.B. Acharya & Dr. Meeta Singh (Minerva Press, New Delhi)
2. Hospital Waste Management & its Monitoring: Madhuri Sharma (Jaypee Brothers, Medical Publishers (P) Ltd. New Delhi)

Practical syllabus
B.Sc. MLT-II Semester

BML-291 (Practical Anatomy II)
[As per Theory BML – 201]

BML-292 (Practical Human Physiology-II)
1. To perform total platelet count.
2. To perform bleeding time.
3. To perform clotting time.
4. To study about CSF examination.
5. To study about intrauterine contraceptive devices.
6. To demonstrate microscopic structure of bones with permanent slides.
7. To demonstrate microscopic structure of muscles with permanent slides.
BML-293 (Practical Biochemistry-II)

1. To identify carbohydrates in given solution by various methods.
2. To determine protein by Biuret method.
3. To perform protein test by various methods.
4. Physical examination of urine
5. Urine sugar determination by Benedict’s method.
6. Protein by heat and acetic method
7. Bile salt, Bile pigments and Urobilinogen determination
8. Determination of Ketone bodies
10. Preparation of hemolysate

BML-294 (Communication Lab)

1. Introduction: Meaning of Communication; Role of Communication in Business: Basic elements of the Communication process, level of Communication, forms, models and media of Communications, Verbal and non-verbal Communication-functions and types. Barriers to effective Communication.
2. Grammar: Subject verb agreement, tense, voice, improvement of sentences, rearrangement of sentences. Vocabulary: usage, synonyms, antonyms.
3. Comprehension
6. Role Playing
7. Group Discussion

B.Sc. MLT- III Semester

Course/Paper: Pathology - I
Paper Code: BML-301

Learning Objective: The curriculum of pathology aims at preparing the students in basic understanding of diseases and their pathogenesis. The syllabi of pathology compliments and supplements the necessary knowledge students have gained in Physiology.

Unit I
Introduction & History of pathology, Basic definitions and familiarization with the common terms used in pathology, Causes and mechanisms of cell injury, reversible and irreversible injury, Introduction of hyperplasia, hypoplasia, hypertrophy, atrophy, metaplasia, necrosis and apoptosis

Unit II
General features of acute and chronic inflammation: Vascular changes, cellular events, Cells and mediators of inflammation, Phagocytosis and its mechanism

Unit III
Tissue Renewal and Repair, healing and fibrosis, cirrhosis, introduction of oedema, hyperaemia, congestion, haemorrhage, haemostasis, thrombosis, embolism, infarction, shock and hypertension.
Unit IV
Protein energy malnutrition, deficiency diseases of vitamins and minerals, nutritional excess and imbalances. Role and effect of metals (Zinc, Iron and Calcium) and their deficiency diseases, Aetiology and pathophysiology of diabetes, arteriosclerosis, myocardial infarction, respiratory diseases (COPD), Parkinson disease
Infectious Diseases: pathogenesis & overview of modes of infections, prevention and control with suitable examples like Typhoid, Dengue

Unit V
Cancer: Definitions, nomenclature, characteristics of benign and malignant neoplasm, metastasis, Carcinogens and cancer, concept of oncogenes, tumour suppressor genes, DNA repair genes and cancers stem cells.

Learning Outcome: This curriculum will provide an introductory nature and build the concepts of how human system work in altered and diseased stage under the influence of various internal and external stimuli to the students.

Suggested Readings:

B.Sc. MLT- III Semester

Course/paper: Clinical Haematology-I
Course Code: BML-302

Learning Objective: This course has been designed to understand the blood disorders, its lab diagnosis and various type of laboratory test.

Unit –I
RBCs, formation, morphology, cytoskeleton, anisocytosis, poikilocytosis, metabolism, role of 2, 3- BPG and oxygen dissociation curve. Anaemia and its classification, Morphological and etiological, pathogenesis, laboratory investigations and management, Iron deficiency anaemia, metabolism of iron, pathogenesis, laboratory investigations and management, principle and procedure of special test Megaloblastic anaemia, pernicious anaemia, pathogenesis, laboratory investigations

Unit-II
Haemoglobin, its synthesis and types, normal and abnormal hemoglobins, extravascular and intravascular hemolysis. Haemolytic anaemia, pathogenesis and laboratory investigations, principle and procedure of special test, G-6-PD

Unit –III
Leukopoiesis, Stages of Leukocyte Maturation, Features of Cell Identification, leucocytosis and leucocytopenia, neutrophilia, eosinophilia, basophilia, monocytosis, lymphocytosis, neutropenia, lymphopenia, causes and significance, toxic granulation, Morphological alterations in neutrophil, effect of HIV on blood cell parameter
Unit-IV
Overview of hemostasis and coagulation, Stages of platelets development, Primary and Secondary hemostasis, Role of platelets, Role of coagulation factors, Coagulation inhibitory system, Fibrinolysis

Unit-V
General blood picture, estimation of iron, TIBC, Transferrin, Ferritin, Plasma haemoglobin, Vit.B12, Folic acid, FIGLU test, Schiling test, Parietal cell antibodies, G-6-PD, Osmotic fragility test, Heinz bodies, Perls Prussian staining, Platelet count, Platelet aggregation test, PT, INR APTT, Mixing experiments in PT and APTT, Thrombin time.

Learning Outcome: Students will learn the differential diagnosis and appropriate diagnostic evaluation of common hematologic abnormalities.

Suggested Readings:

B.Sc. MLT- III Semester
Course/Paper: Microbiology-I
Paper Code: BML-303

Learning Objective: This subject gives a general insight into the history, basics of microbiology and imparts knowledge about equipment used in microbiology.

Unit-I
Development of microbiology as a discipline, Contributions of Anton von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming, Edward Jenner
Introduction to bacterial taxonomy, Classification of Bacteria, Morphology based on size, shape, arrangement, motility, flagella, spores, capsules, cell wall, plasma membrane, pili, ribosomes.

Unit-II

Unit-III
Cell size, shape and arrangement, cell-wall, composition and detailed structure of
Gram-positive and Gram-negative cell walls, Cell Membrane: Structure, function and chemical composition of bacterial cell membranes. Cytoplasm: Ribosome, mesosomes, inclusion bodies, nucleoid, chromosome and plasmids, Endospore: Structure, formation

Unit-IV
General safety measures used in Microbiology laboratory, Sterilization and disinfection: Various physical methods of sterilization – heat, UV radiation, ionizing radiation, filtration, characters affecting sterilization, auto clave control and sterilization indicators.
Biomedical waste management in a Medical Microbiology laboratory: Types of the waste generated, Segregation, Treatment, Disposal

Unit-V
Antiseptics & Disinfectants: Definition, types and properties, mode of action, use, qualities of good disinfectants. Chemical disinfectants – phenol and its compounds, alcohol, halogen, heavy metals and quaternary ammonium compounds, aldehyde, gaseous compound. use and abuse of disinfectants, precautions while using the disinfectants.

Learning Outcome: This course make the students to know handling of instruments and sterilization techniques.

Suggested Readings:
antigens. Antibodies: Historical perspective of antibody structure; structure, function and properties of the antibodies; different classes, subclasses and biological activities of antibodies; concepts of antibody diversity, isotype, allotype, Introduction of hybridoma technology, monoclonal antibodies, polyclonal antibody

Unit-III
Mechanism of humoral and cell mediated immune response. Introduction of Major Histocompatibility Complex, organization of MHC and inheritance in humans; Antigen presenting cells, antigen processing and presentation Complement system and complement fixation test.

Unit-IV
Laboratory tests for demonstration of antigen – antibody reaction such as agglutination, precipitation, ELISA, RIA, Immunofluorescence.

Unit-V
Rheumatological diseases, etiology and pathogenesis and lab investigations

Learning Outcome: The students will learn scientific approaches/techniques that are used to investigate various diseases.

Suggested Readings:

B.Sc. MLT- III Semester

Course/Paper: Histopathology & Histotechniques-I

Course Code: BML.-305

Learning Objective: Students will learn about various histotechniques, handling and processing of tissue specimens as well as staining procedures.

Unit-I
Introduction of histopathology, cytology & histotechniques, laboratory organization, care & maintenance of equipments used in histotechnology lab ,Safety measures in histotechnology lab Reception, Recording, Labelling and transportation of tissue specimens,Basic concepts of fixation and various types of fixative used in histopathology and cytopathology
Unit-II
Tissue and its types, Location and function, Grossing of tissues, whole mount, sections, smears, tissue processing and its steps, manual and automated method, components & principle of automatic tissue processor
Decalcification, decalcification methods, types of decalcifying fluid, Processing of bones and teeth, Embedding media, its type and properties

Unit-III
Microtome, its type and working, various type of microtome, Microtome knives, its type and knife sharpening, Section cutting, fault and remedies, Section adhesive

Unit-IV
Cryostat, frozen sections of fresh, fixed and unfixed tissue, freeze drying, rapid frozen sections and staining for emergency diagnosis
Dye chemistry, Stains and dyes, natural dye, acidic dye, basic dye, neutral dyes, fluorescence dye, mordant, accelerators, accentuators, metachromasia, metachromatic dyes

Unit-V
Progressive, regressive, vital, supravital staining, types of hematoxylin, Haematoxylin and eosin staining, use of control sections in tissue staining, mounting and mounting media, advantages & disadvantages, refractive index

Learning Outcome: Students would able to carry out tissue processing and general staining.

Suggested Readings:

BML-391 (Practical Clinical Haematology-I)

1. Determination of haemoglobin by various methods.
2. Determination of Total RBC count.
3. Determination of PCV
4. Determination of red cell indices
5. Demonstration of hypochromic microcytic slide.
6. General blood picture
7. Determination of G-6-PD
9. Absolute leucocyte count
10. Demonstration of toxic granulation of neutrophil
11. To perform PT and Calculate INR
12. To perform APTT
13. To perform sickling test
14. Determination of Plasma Hemoglobin
15. To perform reticulocyte count.

B. Sc. in Medical Laboratory Technology
BML- 392 (Microbiology, Immunology & Serology - I)
1. Demonstration of Microscope and its parts
2. Demonstration of glassware used in microbiology.
3. Demonstration of autoclave and sterilization of glass wares.
4. Demonstration of Hot air oven and sterilization of glass wares.
5. To perform Gram staining
6. To perform Acid fast staining (Zeihl Neelsen staining)
7. To perform Indian ink staining
8. To perform Hanging drop method
9. Demonstration of capsule
10. Staining of bacterial spores
11. To demonstrate agglutination reaction.
12. To perform RA test
13. To perform WIDAL test
14. To perform RPR test.
15. To perform CRP test.

BML-393 (Histopathology & Histotechniques-I)
1. Demonstration of glass wares and equipment used in histopathology lab.
2. To prepare alcohol of different concentration.
3. To prepare formalin from stock solution.
4. To sharpen knife by honing and stropping.
5. Grossing of tissue
6. To perform tissue processing by manual method.
7. To perform section cutting of paraffin embedded tissue.
8. To fix the smear on glass slide.
9. To perform hematoxylin and eosin staining.
10. Mounting and preservation of slide.
B. Sc. in Medical Laboratory Technology

B.Sc. MLT- IV Semester

Course/Paper: Pathology-II
Course Code: BML-401

Learning Objective: The unique preposition of this paper is that the students learn the basic techniques with clotting mechanism, blood banking techniques and automation.

Unit- I
Hemoglobin, structure, function and types, Hemoglobinometry, Haemoglobin estimation by various methods, advantages and disadvantages, physiological and pathological variations on blood parameters, Hemocytometry, visual and electronic method, neubauer counting chamber, RBC count, WBC count, Platelets count, absolute eosinophil count, principle, procedure, calculation, significance, precautions involved during counting, absolute count of various WBCs. Physiological and pathological changes in values

Erythrocyte sedimentation rate, manual and automated method, factor affecting ESR, packed cell volume, red cell indices (MCV, MCH, MCHC), Physiological and pathological variations in value

Unit-II
Complete blood count, determination by automated method and significance of each parameter, Reticulocyte count, routine examination of CSF, semen, sputum and stool.

Unit –III
Mechanism of coagulation, coagulation factors, Bleeding time, clotting time, platelet count, protamine sulphate test, clot retraction test

Unit-IV
Introduction to immuno hematology and blood banking technology, antigen, antibody, complements, ABO & Rh blood group system, method of determination, other blood group system, Donor selection, blood collection, anticoagulants, additive systems, blood bags, its labelling, storage and transportation

Unit- V
Uses, care & maintenance and calibration of Coulter counter, coagulometer, automatic ESR analyzer, urine analyzer, point of care testing.
Pre and Post analytical variables, automation in hematology

Learning Outcome: Students can perform the various type of tests involved in hematology, immunohematology, coagulation profile and can handle automated instruments.

Suggested Readings:
3. Ochei J & Kolhatkar A(2000), Medical Laboratory Science: Theory & Practice, 3rd edition, Mcgraw Hill Education

B.Sc. MLT-IV Semester
Course/Paper: Clinical Haematology-II
Course Code: BML-402

Learning Objective: This paper encompasses the basic study and understanding of the various haematological disorders as well as their laboratory investigations.

Unit-I
Aplastic anaemia, Anaemia of chronic disorders, Sideroblastic anaemia, Haemolytic Anaemia, etiology, pathogenesis, clinical features, laboratory investigations, Bone marrow examination, composition & functions, aspiration techniques, processing and staining

Unit-II
Hemoglobinopathies, qualitative and quantitative
Sickle cell anaemia, sickle cell trait, etiology, pathogenesis, clinical features, and laboratory investigations, Disease management and prognosis, Sickling test
Thalassaemia, classification, etiology, pathogenesis, clinical features, laboratory investigations, haemoglobin electrophoresis

Unit-III
Leukemia and its classification, WHO and FAB classification, AML, ALL, CML, CLL, its etiology, clinical features, laboratory investigations
Cytochemistry involved in diagnosis of various types of leukemia.

Unit-IV
Qualitative and quantitative disorders of platelets, hypercoaguable test, Disorders of secondary hemostasis, hemophilia and its lab diagnosis, Von-Willebrand disease, Disseminated intravascular coagulation, thrombosis, Disorder of fibrinogen, test for bleeding & coagulation disorders, correction studies for factor deficiency, quantitative factor assay

Unit-V
LE cells, its demonstration and significance, lupus anticoagulants, Blood parasites, Malaria, Trypanosomes, Filariasis, Leishmania

Learning Outcome: This course made the students competent enough to perform various laboratory test related to acute and chronic haematological disorders.

Suggested Readings:
1. Wintrobe’s Clinical Hematology,(2014),13th edition, Lippincott Williams & Wilkins
2. De Gruchy’s Clinical Haematology in Medical Practice,(2012),Sixth edition, Wiley Publications

B.Sc. MLT- IV Semester
Course/Paper: Microbiology-II
Course Code: BML-403

Unit-I
Lab organization, management, recording of results and quality control in Medical Microbiology Lab. Safety measures in Microbiology Laboratory. Occurrence of lab infections, route of infections in laboratory, safety measures precaution in use of pathogens in teaching.

Unit-II
Host pathogen interaction: Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and their types, Opportunistic infections, Nosocomial infections. Transmission of infection

Unit-III
Principle, working, use, care & maintenance of Laminar air flow, Centrifuge, Autoclave, hot air Oven, Incubator, Colony Counter, Muffle Furnace, Mac-intos Field-jar etc. Sterility testing of I/v fluids, Collection, transportation and processing of I/v fluids for bacterial contamination, Recording the result and interpretation

Unit-IV
Hospital acquired infection, Specimen collection from patients, clinics and hospitals, Specimen collection for epidemiological investigations, role of microbiology laboratory in control of nosocomial infection

Antimicrobial agents and Antibiotics: Introduction, mechanism of action, classification and uses, Antibiotic susceptibility testing in bacteriology, Culture medium used for Antibiotic susceptibility testing, Preparation and standardization of inoculums, Control bacterial strains, Description, morphology, cultural characteristics, pathogenecity, cultural characteristics, clinical features and lab diagnosis of Staphylococcus, Streptococcus, Pneumococcus, Neisseria, Bordetella, Choice of antibiotics MIC and MBC: Concepts and methods for determination Various methods of Antibiotic susceptibility testing with special reference to Stokes and Kirby-Bauer method

Unit-V
Description, morphology, cultural characteristics, pathogenecity, cultural characteristics, clinical features and lab diagnosis of Clostridia, Escherichia coli, Salmonella,Shigella, Proteus, Vibrio, Pseudomonas, Spirocheates, Chlamydia, Actinomyces, Rickettsia,Yersenia, Brucella,

Description, morphology, cultural characteristics, pathogenecity, cultural characteristics, clinical features and lab diagnosis of Vibrio, Pseudomonas, Spirocheates, Chlamydia, Actinomyces, Rickettsia,Yersenia, Brucella,

Introduction of Mycology: Definition, general properties and classification Cutaneous mycoses, Systemic mycoses, Opportunistic mycoses Culture and laboratory test for fungus

Learning Outcome: Students would be able to identify and differentiate bacteria and fungus in biological samples.

Suggested Readings
Microbiology. 8th edition, University Press Publication

B.Sc. MLT- IV Semester
Course/Paper: Immunology & Serology-II
Course Code: BML-404

Learning Objective: This paper will provide knowledge of serological techniques, autoimmune disorders their markers and vaccines.

Unit- I
Western blotting, Immunodiffusion, Immunelectrophoresis, Hypersensitivity and its types Introduction to Allergy and its laboratory test

Unit-II
Introduction of transplant immunology, graft rejection, tissue typing for kidney and bone marrow transplant, Laboratory test for transplant.

Unit –III
Autoimmune disorders, pathogenesis, organ specific and systemic autoimmune disorders and its markers such parietal cell antibody, anti sperm antibody, lupus anticoagulants, anti mitochondrial antibody, ANA, ds DNA, HLA-B27, ASMA, anti CCP

Unit-IV
Immunological disorders: primary and secondary immunodeficiency, SCID, AIDS, Tumour, types of tumours, Various Tumour Markers, their significance and method of estimation.

Unit-V
Vaccines, classification and applications, Active and passive immunization, Immunoprophylaxis schedule in neonates, children and in pregnancy

Learning Outcome: Students will able to carry out differential diagnosis of disease by the help of serological techniques.

Suggested Readings:

B.Sc. MLT- IV Semester
Course/Paper: Histopathology & Histotechniques-II
Paper Code: BML-405

Learning Objective: This paper aims to understand the principle, procedure & demonstration of various tissue constituents and advance tools.

Unit-I
Staining of carbohydrates: preparation of Schiff reagent, PAS staining, Alcian blue, staining of glycogen, Amyloid, other staining method
Connective tissue & its staining: Trichrome staining, verhoeff stain, Weigert Resorcin stain, Gordon’s and Sweet stain, Gomori’s method, von Geison stain, PTAH stain

Unit-II
Demonstration of minerals and pigments in tissue sample, Demonstration and identification of lipids, Demonstration of enzymes, diagnostic application and the demonstration of phosphatases, dehydrogenases, oxidases and peroxidases, Demonstration of microorganism on tissue specimens, Bacteria, AFB, Actinomyces, spirochetes, fungi

Unit-III
Demonstration of nucleic acids, Processing and staining of bone marrow sample. Fixation, Processing and section cutting of bones, eye ball, Techniques in neuropathology: Neurons staining, Myelin, Neuropathology lab specimen handling

Unit-IV
Demonstration of sex chromatin, Museum techniques

Electron microscopy: Principle and working, fixation, processing and staining of tissue Fluorescence Microscope: Principle and working

Unit- V
Immunohistochemistry: principle, types, applications, antigen retrieval, APAAP, PAP Staining, Quality control in histopathology

Learning Outcome: Students would be able to perform various staining techniques and understand principle and application of various techniques.
Suggested Readings:

Practical syllabus

B.Sc. MLT- IV Semester

BML-491 (Clinical Haematology-II)

1. Staining of bone marrow
2. To perform sickling test.
3. To determine fetal haemoglobin
4. To perform Heinz bodies
5. Demonstration of leukemic slides
6. To perform LAP scoring
7. To determine total platelet count
8. To perform PT
9. To perform APTT
10. To perform thrombin time.
11. To perform D-dimer test.
12. To determine fibrinogen conc.
13. General blood Picture
14. To demonstrate malarial slide
15. Haemoglobin electrophoresis
16. Demonstration of hemoparasites like trypanosomes, Filaria, Malaria

BM-492 (Fundamentals of Microbiology, Immunology & Serology-II)

1. Demonstration of Autoclave and sterilization of media
2. Demonstration of Laminar air flow and media preparation
3. Preparation of culture plates
4. Demonstration of Centrifuge.
5. Demonstration of hot air Oven and sterilization of glassware’s
6. Demonstration of Incubator and preservation of cultures
7. Preparation of media
8. Antibiotic sensitivity test.
9. Microscopic examination of urine
10. Examination of urine
11. Examination of sputum
12. To perform HIV Tridot test.
13. To perform radial immunodiffusion test.
14. To perform immunoprecipitation method.
15. To perform HBsAg rapid test.
16. To perform ASO test
17. To perform ELISA test.
18. To perform TB IgG & IgM test
19. To perform Dengue IgG & IgM test
20. To perform typhidot test.
21. Introduction of Allergy panel
22. Montoux test

BML-493 (Histopathology & Histotechniques-II)
1. Grossing of tissue
2. To perform tissue processing by manual method.
3. To perform section cutting of paraffin embedded tissue.
4. To fix the smear on glass slide.
5. To perform hematoxylin and eosin staining.
6. To perform PAS staining.
7. To perform AFB staining.

B.Sc. MLT- V Semester

Course/Paper: Immunohematology & Blood Banking

Paper Code: BML-501

Learning Objective: The prime concern of this subject to learn about the concept of blood grouping, blood collection, infectious markers determination, compatibility testing and quality control involved in blood transfusion services.

Unit-I
Basic Principles of Blood Banking, Antigen, Antibody, naturally occurring antibody, Complement, ABO & Rh blood group system, Methods of blood group determination, Forward and Reverse grouping, Slide & Tube method, Gel method.

Unit-II
Other blood group system such as Lewis, MNS, Kell Duffy etc. Anticoagulants and preservative used in blood bank, Donor selection criteria, Blood collection and processing

Unit-III
Transfusion transmissible infectious disease screen, Coomb’t test, Cross matching, Compatibility testing, Antibody Screening & Identification, Grading of Reaction/Agglutination

Unit-IV
Blood components and its preparation, preservation, storage and transportation Indications for different blood component transfusion, Blood transfusion reaction and its type, HDN Introduction of stem cell banking and bone marrow transplantation.

Unit-V
Apheresis, indications of hemapheresis, plasmapheresis, plateletspheresis, plasmapheresis Quality control of reagents, equipments, blood components used in transfusion medicine. Role of NACO, Indian Red Cross Society, DGHS and blood transfusion services.

Learning Outcome: Students would understand the basics of transfusion medicine, laboratory testing, quality control and apheresis techniques.

Suggested Readings:
2. Ochei J & Kolhatkar A(2000),Medical Laboratory Science: Theory &
B. Sc. in Medical Laboratory Technology

Practice, 3rd edition Mcgraw Hill Education
5. Wintrobe’s Clinical Hematology,(2014), 13th edition, Lippincott Williams & Wilkins

B.Sc. MLT- V Semester
Course/Paper: Clinical Enzymology & Automation
Paper Code: BML-502

Learning Objective: This course has been formulated to impart comprehensive knowledge of enzymes and automation in Clinical Laboratory.

Unit-I
Introduction to enzymes, Classification of Enzymes, Isoenzymes, Concept of lock and key and induced fit theory, concept of activation energy and binding energy. Factors affecting enzyme activity

Unit-II
Coenzyme: Classification, various types and function, structure of NAD+, NADP+, FAD and FMN, PPP. Units for measuring enzyme activity, factors affecting enzyme level in serum/plasma. Clinical assay & its type, kinetic assay and end point assay for the enzymes

Unit-III
Enzyme kinetics, the Michaelis-Menten equation and its physiological significances, Enzyme Inhibition, types of inhibitors of enzyme

Unit-IV
Isoenzymes, their tissue distribution and clinical significance: ALT, AST, ALP, GGT, CPK, CK-MB, LDH, Troponin, Myoglobin, Amylase, Lipase, ACP

Unit-V
Basic Concepts of Automation, principle, working and maintenance of various clinical chemistry analyzers, point of care testing, Hospital Laboratory Management

Learning Outcome: Students would be able to understand contemporary methods and practical approaches that are used in the clinical laboratories for the investigation of the diseased state as well as application of automation in laboratory.

Suggested Readings:
Learning Objective: This paper aims to learn about introduction, general characteristics, life cycle and laboratory diagnosis of various medically important parasites.

Unit-I
Introduction of parasites, host, zoonosis, host parasits relationship, sources of infection, mode of infection, pathogenesis, immunity in parasitic infection, lab diagnosis

Protozoalogy: Entamoeba histolytica, Malarial Parasites, Leishmania, Trypanosomes, their morphology, life cycle, pathogenesis, clinical features and lab diagnosis.

Helminthology: Introduction and classification, Taenia solium, Taenia Saginata,Fasciola, Ascaris, Wuchereria bancrofti their morphology, life cycle, pathogenesis, clinical features and lab diagnosis.

Hookworm, Trichuris. Dracunculus their morphology, life cycle, pathogenesis, clinical features and lab diagnosis.

Unit-II
Diagnostic methods in Parasitology: Introduction, Examination of stool, urine, blood, Culture methods, Immunological diagnosis and serology

Unit III
Nature and Properties of Viruses
Introduction: Discovery of viruses, nature and definition of viruses, general properties, concept of viroids, virusoids, satellite viruses and Prions. Structure of Viruses: Capsid symmetry, enveloped and non-enveloped viruses

Isolation, purification and cultivation of viruses
Viral taxonomy: Classification and nomenclature of different groups of viruses, Modes of viral transmission: Persistent, non-persistent, vertical and horizontal
Viral multiplication and replication strategies: Interaction of viruses with cellular receptors and entry of viruses. Assembly, maturation and release of virions

Unit- IV
Poxviruses, Herpesviruses, hepatitis viruses, retroviruses-HIV, Picorna viruses, rhabdoviruses, orthomyxoviruses and paramyxvo viruses, TORCH profile, Symptoms, mode of transmission, prophylaxis and control of Polio, Herpes, Hepatitis, Rabies, Dengue, HIV, Influenza with brief description of swine flu, Ebola, Chikungunya, Japanese Encephalitis

Unit V
Introduction to oncogenic viruses, Types of oncogenic DNA and RNA viruses, concepts of oncogenes and proto-oncogenes, prevention & control of viral diseases, antiviral compounds and their mode of action, interferon and their mode of action, General principles of viral vaccination
Learning Outcome: Students would be able to identify various viruses with latest biomedical techniques and can demonstrate the diseases associated with them.

Suggested Readings:

B.Sc. MLT- V Semester
Course/Paper: Diagnostic Cytology
Paper Code: BML-504

Learning Objective: The students will learn about various staining procedures for demonstration of different substances & various cytological investigations. This will include special staining procedures & handling & testing of various cytological specimens.

Unit-I
Cell: basic structure and function, cell organelles, cell cycle, Benign and Malignant tumors, Instruments used in cytology, preparation of buffers, stainsMicroscopy: Light, compound, phase contrast, fluorescence

Unit- II
Instruments and equipments used in cytology Fixation and Fixatives used in cytology, Adhesive and mounting media, Cell block and cytospin technique, Staining such as PAP, Diff-quick, MGG, H&E, Shorr staining, significance of PAP-HPV, Destaining and restaining of slides, Cover slipping

Unit-III
Aspiration and exfoliative cytology, Patient preparation, Sample collection, Fixation, Processing and Staining FNAC, collection, processing of sample and staining, on site quick staining procedure

Unit-IV
Pap staining, Progressive & Regressive, Hormonal cytology in different age groups,Collection and processing of sputum, BAL, CSF, Pleural, peritoneal and pericardial fluid, Gynaecologic sample

Unit-V
Sex chromatin demonstration, Introduction of Immunocytochemistry, different markers and its applications, Automation in cytology, Liquid based preparation & automated screening device

Learning Outcome: Students would be able to perform collection, processing, staining
and quality control in cytological diagnosis.

Suggested Readings:

B.Sc. MLT- V Semester
Course/Paper: Principles of Laboratory Management & Medical Ethics
Paper Code: BML-505

Learning Outcome: The students will be made aware of the basic ethics, good lab practices including awareness/ safety in a clinical lab.

Unit-I
Ethical Principles and standards for a clinical laboratory professional duty to the patient, duty to colleagues and other professionals, Good Laboratory Practice (GLP), Introduction to Basics of GLP and Accreditation, Aims of GLP and Accreditation, Advantages of Accreditation, Brief knowledge about National and International Agencies for clinical laboratory accreditation

Unit-II
Awareness/Safety in a clinical laboratory, General safety precautions, HIV: pre- and post-exposure guidelines, Hepatitis B & C: pre- and post-exposure guidelines, Drug Resistant Tuberculosis
Patient management for clinical samples collection, transportation and preservation, Sample accountability, Purpose of accountability, Methods of accountability

Unit-III
Sample analysis: Introduction, factors affecting sample analysis, reporting results, basic format of a test report, reported reference range, clinical alerts, abnormal results, results from referral laboratories, release of examination results, alteration in reports

Unit-IV
Quality Management system: Introduction, Quality assurance, Quality control system, Internal and External quality control, quality control chart, Biomedical
Introduction and importance of calibration and Validation of Clinical Laboratory instrument Ethics in Medical laboratory Practice, Ethics in relation to Pre-Examination procedures, Examination procedures, reporting of results, preserving medical records
Procurement of equipment and Inventory Control,

Unit-V
Audit in a Medical Laboratory, Introduction and Importance, NABL & CAP, Responsibility, Planning, Horizontal, Vertical and Test audit, Frequency of audit, Documentation

Learning Outcome: Students would be competent enough to understand sample accountability, quality management system, biomedical waste management, calibration and validation of clinical laboratory instruments, Laboratory Information system (LIS), Hospital Information system (HIS) and financial management.
Suggested readings:
3. Henry's Clinical Diagnosis and Management by Laboratory Methods,(2011),22nd edition,Elsevier

Practical Syllabus
B.Sc. MLT- V Semester

BML-591 (Clinical Enzymology)
1. To perform enzyme estimation of LFT
2. To perform enzyme estimation of Cardiac profile
3. Determination of Troponin I
4. To perform enzyme estimation of Pancreatic disorder
5. To perform estimation of ACP.
6. Antenatal profile
7. Estimation of bicarbonate
8. Arterial blood gas analysis
9. Determination of Calcium
10. Creatinine and urea clearance test

BML-592 (Practical Parasitology & Virology)
1. Leishman staining for malarial parasites
2. Demonstration of permanent slide of Trichuris, Ascaris and Hookworm
3. Saline wet mount for observing ova and eggs of parasites.
4. Iodine wet mount for observing ova and eggs of parasites.
5. Concentration of stool samples by floatation method
7. Demonstration of various parasites by permanent slides.
8. Concentration of stool sample by sedimentation method
9. Serological diagnosis of Leishmania
10. Aldehyde Chopra test for Kala Azar
11. To perform HBsAg/ Australia Ag by rapid method
12. To perform HBsAg by ELISA
13. To perform HIV Tridot method.
14. To perform HIV by ELISA
15. To perform Dengue IgG/IgM
16. To perform TORCH profile
17. Demonstration of PCR HBV
18. Demonstration of PCR HIV Viral load

BML-593 (Practical Diagnostic Cytology)
1. Preparation of various cytological fixatives
2. Preparation of various stains used in cytology
3. Preparation of smear
4. To perform PAP staining
5. To perform Giemsa staining on fluid sample
6. To prepare cell suspension
7. Processing of various fluid samples
Learning Objective: This paper is framed to provide basic knowledge of hormones & toxic substances with their determination techniques as well as related disorders.

Unit-I
Hormones, Classification of hormones, organs of endocrine system their secretion and function, regulation of hormone secretion, Mechanism of action

Unit-II
Thyroid function test: Thyroid hormones, biological function, hypothyroidism, hyperthyroidism, Determination of T₃, T₄, TSH, FT₃, FT₄, TBG, Disorder associated with thyroid dysfunction.

Unit-III
Infertility profile: LH, FSH, TSH, Estrogen, Progesterone, Total Testosterone, Free testosterone, DHEA-S, 17-Ketosteroids, Prolactin, their estimation and clinical significance, reference range, hypo and hyper secretion, Triple Test

Unit-IV
Growth hormone, ACTH, Aldosterone, Cortisol their estimation and clinical significance, reference range, hypo and hyper secretion

Unit-V
Introduction of Toxicology, Alcohol poisoning, Lead poisoning, Zinc poisoning, Mercury poisoning drugs abuse, screening procedure for drug screening, Spot tests, hair and urine test, Immunoassay for drugs.

Learning Outcome: After the exposure of the current paper students would be able to detect hormones and toxic substances in blood samples and also understand the basis of endocrine disorders.

Suggested readings:
3. Henry's Clinical Diagnosis and Management by Laboratory Methods,(2011),22nd edition,Elsevier
Learning Objective: This paper imparts the required skills for the detection of diseases, operation and application of various advance techniques.

Unit-I
Chromatography, its principle, types and applications.
Paper Chromatography, Thin layer chromatography, HPLC, Gas liquid chromatography, Ion exchange chromatography and their application in diagnosis.

Unit-II
Basic Principle of electrophoresis, Paper electrophoresis, Gel electrophoresis, PAGE, SDS-PAGE, Agarose gel electrophoresis, buffer systems in electrophoresis.
Electrophoresis of proteins and nucleic acids, haemoglobin, immunoglobulin’s, isoenzymes Applications of electrophoresis in clinical diagnosis.

Unit-III
Centrifugation, fixed angle and swinging bucket rotors , RCF and sedimentation coefficient, differential centrifugation, density gradient centrifugation and Ultracentrifugation.

Unit-IV
Radioisotopes, Radioactivity, instruments for radioactivity measurement, applications of radioisotopes in clinical biochemistry

Unit-V
Immonoassay: ELISA, RIA, FIA, FACS and their applications in clinical diagnosis.

Learning Outcome: After the exposure of the current paper students would find themselves equipped with a full package of skill development in order to work in an advance diagnostic setting.

Suggested Readings:
2. Henry's Clinical Diagnosis and Management by Laboratory Methods,(2011),22nd edition, Elsevier
5. Wilson & Walker, Practical Biochemistry,2nd edition

B.Sc. MLT- VI Semester

Course/Paper: Diagnostic Molecular Biology

Paper Code: BML-603

Learning Objective: This syllabus provides a basic introduction of molecular biology and its techniques like PCR, RTPCR etc.

Unit-I
Nucleic Acids, DNA, RNA, composition, structure, types, denaturation and renaturation of DNA, chemistry of DNA synthesis, general principles of replication, enzyme involved in DNA replication
– DNA polymerases, DNA ligase, primase, telomerase and other accessory proteins.
Unit II
Basic transcription apparatus, Initiation, elongation and termination of transcription, Eukaryotic Transcription of mRNA, tRNA and rRNA, types of RNA polymerases, transcription factors Introduction of translation

Unit-III
Nucleic acid amplification testing, PCR, Principle, Types, applications, Thermal cycler, RT-PCR, reverse transcriptase PCR, Nested PCR

Unit-IV
Blotting techniques, southern blotting and Western blotting Introduction to chromosomes, its structure and disorder, Karyotyping, Chromosomal studies in hematological disorders (PBLC and Bone marrow), FISH

Unit-V
Radioisotopes and its application in measurement of blood volume, determination of red cell volume and plasma volume, red cell life span, platelet life span, radiation hazards and its prevention disposal of radioactive material Introduction and applications of Flow cytometry, Stem cell banking, Prenatal Diagnosis

Learning Outcome: Students will also be rendered to take up future molecular biology challenges and efficiently work in diagnostic molecular setup.

Suggested Readings:
2. Henry's Clinical Diagnosis and Management by Laboratory Methods,(2011),22nd edition,Elsevier

Practical Syllabus
B.Sc. MLT- VI Semester

BML-691(Practical Clinical Endocrinology & Toxicology)
1. To determine T3 conc. in serum sample.
2. To determine T4 conc. in serum sample.
3. To determine TSH conc. in serum sample.
4. To determine LH conc. in serum sample.
5. To determine FSH conc. in serum sample.
6. To determine Prolactin conc. in serum sample.
7. To determine TSH conc. in serum sample.
8. To perform TRIPLE test.
10. Beta HCG

BML-692 (Practical Advanced Diagnostic Techniques)
1. To perform separation of amino acids by paper chromatography
2. To perform separation of amino acids by thin layer chromatography
3. To perform separation of DNA by Agarose gel electrophoresis.
4. Separation of protein by PAGE
5. Separation of protein by paper electrophoresis
6. Separation of haemoglobin
BML-693 (Practical Diagnostic Molecular Biology)
1. Isolation of DNA
2. Separation of DNA by Agarose gel electrophoresis
3. Demonstration of thermal cycler and PCR.
4. HIV test by Western Blotting
5. To perform karyotyping
6. Demonstration of PCR HLA B-27
7. Demonstration of PCR HIV
8. Demonstration of PCR MTB

BML-686: Hospital Internship and Project

Students shall be deputed to various labs of Pathology department wherein they shall undergo practical training of handling patients, collection and processing of blood, urine, sputum stool and body fluids samples.

Identification of patient’s particulars based on CR number, Lab Number and transfer of samples from collection centres to different labs. Process of performing various tests in different labs. Each student is required to maintain a logbook of the various posting.

Student’s performance shall be evaluated on continuous basis by the faculty posted in various sections. The faculty shall submit the assessment records of each student posted in his/her section on monthly basis to the HOD. Marks will be awarded out of 100.

xxx