Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

3rd Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M (CS) 301</td>
<td>Numerical Methods</td>
<td>2 1 0</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M302</td>
<td>Mathematics-III</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EC(EE)301</td>
<td>Analog Electronic circuits</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EC(EE)302</td>
<td>Digital Electronic circuit</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EE-301</td>
<td>Electric Circuit theory</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EE-302</td>
<td>Field theory</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC(EE)391</td>
<td>Analog & Digital Electronic circuit</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M (CS)391</td>
<td>Numerical Methods</td>
<td>0 0 2</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EE-391</td>
<td>Electric Circuit Theory</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HU-381</td>
<td>TECHNICAL REPORT WRITING & LANGUAGE LABORATORY PRACTICE</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 11 7

TOTAL OF SEMESTER: 32 27

4th Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-401</td>
<td>Values and Ethics in Profession</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PH(EE)-401</td>
<td>Physics-II</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ME(EE)411</td>
<td>Thermal Power Engineering</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CH-401</td>
<td>Basic Environmental Engineering & Elementary Biology</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EE-401</td>
<td>Electric Machine-I</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EE-402</td>
<td>Electrical & Electronic measurement</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PH(EE)-491</td>
<td>Physics-II</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ME(EE)481</td>
<td>Thermal power Engineering Lab</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EE-491</td>
<td>Electric Machine-I</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EE-492</td>
<td>Electrical & Electronic measurement</td>
<td>0 0 3</td>
<td>3 2</td>
<td></td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 12 8

TOTAL OF SEMESTER: 32 28
NUMERICAL METHODS
Code: M(CS) 301
Contacts: 2L+1T
Credits: 2

Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors. (4)

Interpolation: Newton forward/backward interpolation, Lagrange’s and Newton’s divided difference Interpolation. (5)

Numerical integration: Trapezoidal rule, Simpson’s 1/3 rule, Expression for corresponding error terms. (3)

Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method. (6)

Numerical solution of Algebraic equation: Bisection method, Regula Falsi method, Newton-Raphson method. (4)

Numerical solution of ordinary differential equation: Euler’s method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method. (6)

Text Books:

References:
2. Baburam: Numerical Methods, Pearson Education.
4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
5. Srimanta Pal: Numerical Methods, OUP.

MATHEMATICS
Code: M 302
Contacts: 3L+1T = 4
Credits: 4

Note 1: The entire syllabus has been divided into four modules.
Note 2: Structure of Question Paper
There will be two groups in the paper:

Group A: Ten questions, each of 2 marks, are to be answered out of a total of 15 questions, covering the entire syllabus.

Group B: Five questions, each carrying 10 marks, are to be answered out of (at least) 8 questions. Students should answer at least one question from each module.
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

[At least 2 questions should be set from each of Modules II & IV. At least 1 question should be set from each of Modules I & III. Sufficient questions should be set covering the whole syllabus for alternatives.]

Module I: Fourier Series & Fourier Transform [8L]

Topic: Fourier Series:

(1) Euler’s Formulae for Fourier Series, Fourier Series for functions of period 2π, Fourier Series for functions of period $2l$, Dirichlet’s conditions, Sum of Fourier series. Examples. (1)

Topic: Fourier Transform:
Sub-Topics: Fourier Integral Theorem (statement only), Fourier Transform of a function, Fourier Sine and Cosine Integral Theorem (statement only), Fourier Cosine & Sine Transforms.

Fourier, Fourier Cosine & Sine Transforms of elementary functions. (1)

Convolution Theorem (statement only), Inverse of Fourier Transform, Examples. (2)

Module II : Calculus of Complex Variable [13L]

Topic: Introduction to Functions of a Complex Variable.

Sub-Topics: Complex functions, Concept of Limit, Continuity and Differentiability. (1)

Analytic functions, Cauchy-Riemann Equations (statement only). Sufficient condition for a function to be analytic. Harmonic function and Conjugate Harmonic function, related problems. (1)

Construction of Analytic functions: Milne Thomson method, related problems. (1)

Topic: Complex Integration.

Sub-Topics: Concept of simple curve, closed curve, smooth curve & contour. Some elementary properties of complex Integrals. Line integrals along a piecewise smooth curve. Examples. (2)

Cauchy’s theorem (statement only). Cauchy-Goursat theorem (statement only). Examples. (1)

Cauchy’s integral formula, Cauchy’s integral formula for the derivative of an analytic function, Cauchy’s integral formula for the successive derivatives of an analytic function. Examples. (2)

Taylor’s series, Laurent’s series. Examples (1)
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Topic: Zeros and Singularities of an Analytic Function & Residue Theorem.

Sub-Topics: Zero of an Analytic function, order of zero, Singularities of an analytic function. Isolated and non-isolated singularity, essential singularities. Poles: simple pole, pole of order m.
Examples on determination of singularities and their nature. (1)

Residue, Cauchy’s Residue theorem (statement only), problems on finding the residue of a given function, evaluation of definite integrals: \(\int_0^\infty \frac{\sin x}{x} \, dx \), \(\int_0^{2\pi} \frac{d\theta}{a + b\cos \theta + c\sin \theta} \), \(\oint \frac{P(z)}{Q(z)} \, dz \) (elementary cases, P(z) & Q(z) are polynomials of 2\(^{nd}\) order or less). (2)

Topic: Introduction to Conformal Mapping.

Sub-Topics: Concept of transformation from z-plane to w-plane. Concept of Conformal Mapping. Idea of some standard transformations. Bilinear Transformation and determination of its fixed point. (1)

Module III: Probability [8L]

Topic: Basic Probability Theory

Sub-Topics: Classical definition and its limitations. Axiomatic definition.
Some elementary deduction: i) \(P(O)=0 \), ii) \(0\leq P(A)\leq 1 \), iii) \(P(A^{'})=1-P(A) \) etc. where the symbols have their usual meanings. Frequency interpretation of probability. (1)

Addition rule for 2 events (proof) & its extension to more than 2 events (statement only). Related problems. Conditional probability & Independent events. Extension to more than 2 events (pairwise & mutual independence). Multiplication Rule. Examples. Baye’s theorem (statement only) and related problems. (3)

Sub-Topics: Definition of random variable. Continuous and discrete random variables. Probability density function & probability mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples. (2)

Some important discrete distributions: Binomial & Poisson distributions and related problems.
Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only. (2)

Module IV: Partial Differential Equation (PDE) and Series solution of Ordinary Differential Equation (ODE) [13L]

Topic: Basic concepts of PDE.

Sub-Topics: Origin of PDE, its order and degree, concept of solution in PDE. Introduction to different methods of solution: Separation of variables, Laplace & Fourier transform methods. (1)

Topic: Solution of Initial Value & Boundary Value PDE’s by Separation of variables, Laplace & Fourier transform methods.
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Sub-Topics:
PDE I: One dimensional Wave equation. (2)
PDE II: One dimensional Heat equation. (2)
PDE III: Two dimensional Laplace equation. (2)

Topic: Introduction to series solution of ODE.

Sub-Topics: Validity of the series solution of an ordinary differential equation. General method to solve \(P_0 y'' + P_1 y' + P_2 y = 0 \) and related problems. (2)

Topic: Bessel’s equation.

Sub-Topics: Series solution, Bessel function, recurrence relations of Bessel’s Function of first kind. (2)

Topic: Legendre’s equation.

Sub-Topics: Series solution, Legendre function, recurrence relations and orthogonality relation. (2)

TOTAL LECTURES: 42

Text Books:
3. Das N.G.: Statistical Methods, TMH.

References:
5. Ramana B.V.: Higher Engineering Mathematics, TMH.

ANALOG ELECTRONIC CIRCUITS
EC (EE)-301

Credit: 3 Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filters & Regulators: Capacitor filters, (\pi)-section filter, ripple factor, series and shunt voltage regulator, percentage regulation, Concept of SMPS.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Transistor biasing & stability: Q point, Self Bias-CE, Compensation techniques, h-model of Transistor, Expression of voltage gain, current gain, input & output impedance, Trans-resistance & Trans-conductance, Emitter follower circuits, High frequency model of Transistor.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Transistor amplifier: RC coupled amplifier, Function of all components, Equivalent circuit, derivation of voltage gain, Current gain, Input impedance & output impedance, Frequency response characteristics, Lower & upper half frequencies, Bandwidth, Concept of Wide band amplifier.</td>
<td>5</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Feed back amplifier & Oscillators: Concept of Feed back, Negative & Positive feedback, Voltage/Current, Series/Shunt feedback, Berkhausen criterion, Colpit, Hartley’s, Phase shift, Wien bridge, & Crystal oscillators.

Operational amplifier: Ideal OPAMP, Differential amplifier, Constant current source (Current mirror etc), Level shifter, CMRR, Open & closed loop circuits, importance of feedback loop (positive & negative), inverting & non-inverting amplifiers, Voltage follower/Buffer circuits.

Power amplifier: Class A, B, AB, C, Conversion efficiency, Tuned amplifier.

Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.

Text Books:
1. Microelectronic Circuits, Sedra & Smith, Oxford University Press.
3. Electronic devices & Circuits, Balbir Kumar & Shail B. Jain, PHI.
4. Op-amps and Linear IC’s, R.A. Gayakwad, PHI.

Reference Books:
4. Operational Amplifier & Linear IC’s, Bell, Oxford University Press.

DIGITAL ELECTRONICS CIRCUITS
EC (EE)-302

Credit: 3 Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data and number system: Binary, Octal and Hexadecimal representation and their conversion, BCD, ASCII, EBDIC, Gray codes and their conversion, Signed binary numbers representation with 1’s and 2’s complement methods, Binary arithmetic.</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Boolean algebra: Various logic gates and their truth tables and circuits, Representation in SOP and POS forms, Minimization of logic expressions by algebraic method, K-map method.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Combinational circuits: Adder and sub tractor circuit, Circuit of Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer and parity Generator.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Memory systems: RAM, ROM, EPROM, EEPROM</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Sequential circuits: Basic memory elements, S-R, J-K, D, and T Flipflop, various types of Registers, Counters & their design, Irregular counter, State table & State transition diagram, Sequential circuit design methodology.</td>
<td>6</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Continuous & Discrete, Fixed & Time varying, Linear and Nonlinear, Lumped and Distributed, Passive and Active networks and systems. Independent & Dependent sources, Step, Ramp, Impulse, Sinusoidal, Square, Saw tooth signals.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Coupled circuits: Magnetic coupling, Polarity of coils, Polarity of induced voltage, Concept of Self and Mutual inductance, Coefficient of coupling, Modeling of coupled circuits, Solution of problems.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Fourier method of waveform analysis: Fourier series and Fourier Transform (in continuous domain only). Application in circuit analysis, Solution of Problems</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Graph theory and Networks equations: Concept of Tree, Branch, Tree link, Incidence matrix, Tie-set matrix and loop currents, Cut set matrix and node pair potentials. Duality, Solution of Problems</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Two port networks analysis: Open circuit Impedance & Short circuit Admittance parameter, Transmission parameters, Hybrid parameters and their inter relations. Driving point impedance & Admittance. Solution of Problems</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Filter Circuits: Analysis and synthesis of Low pass, High pass, Band pass, Band reject, All pass filters (first and second order only) using operational amplifier. Solution of Problems</td>
<td>4</td>
</tr>
</tbody>
</table>

Text Books:
3. Fundamental of Digital Circuits, A. Anand Kumar, PHI.

Reference Books:
1. Digital Logic Design, Morries Mano, PHI.
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

3. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli

Reference Books:
1. Network Analysis, M.E. Valkenburg, Pearson Education.

FIELD THEORY
EE-302

Credit: 4 Contact: 3L+1T

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz’s theorem. Solution of problems</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Electrostatic field: Coulomb’s law, field intensity, Gauss’s law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor –dielectric, Conductor-free space. Poisson’s and Laplace’s equation, General procedure for solving Poisson’s and Laplace’s equation. Solution of problems</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Magneto static fields: Biot- savart law, Ampere’s circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation in material, Magnetic boundary condition, Inductor and Inductances, Magnetic energy, Force on magnetic material. Solution of problems</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Electromagnetic fields: Faraday’s law, Transformer and motional emf, Displacement current, Maxwell’s equations, Time varying Potential, Time harmonic fields. Solution of problems</td>
<td>5</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>6</th>
<th>Electromagnetic wave propagation:</th>
<th>Wave equation, Wave propagation in lossy dielectric, Plane waves in loss less dielectric, Plane wave in free space, Plane wave in good conductor, Skin effect, Skin depth, Power & Poynting vector, Reflection of a plane wave at normal incidence, reflection of a plane wave at oblique incidence, Polarisation. Solution of problems</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Transmission line:</td>
<td>Concept of lump & distributed parameters, Line parameters, Transmission line equation & solutions, Physical significance of solutions, Propagation constants, Characteristic impedance, Wavelength, Velocity of propagation. Solution of problems</td>
<td>4</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Practical

Analog & Digital Electronic Circuit
EC (EE)-391

Credit: 2 **Contact:** 3

1. Study of Ripple and Regulation characteristics of full wave rectifier with and without capacitor filter.
2. Study of Zener diode as voltage regulator.
3. Construction of two stage R-C coupled amplifier & study of its gain and Bandwidth.
5. Realisation V-I & I-V converter using Operational Amplifier.
7. Study of DAC & ADC
8. Realisation of basic gates using Universal logic gates.
10. Design of Combinational circuit for BCD to decimal conversion to drive 7-segment display using Multiplexer.
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

NUMERICAL METHODS
Code : M(CS) 391
Credits :1

1. Assignments on Newton forward /backward, Lagrange’s interpolation.
2. Assignments on numerical integration using Trapezoidal rule, Simpson’s 1/3 rule, Weddle’s rule.
3. Assignments on numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
4. Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton Raphson methods.
5. Assignments on ordinary differential equation: Euler’s and Runge-Kutta methods.
6. Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.

ELECTRIC CIRCUIT THEORY LABORATORY
EE-391
Credit: 2 Contact: 3

1. Transient response of R-L and R-C network: simulation with PSPICE /Hardware
2. Transient response of R-L-C series and parallel circuit: Simulation with PSPICE/ Hardware
3. Determination of Impedance (Z) and Admittance (Y) parameter of two port network: Simulation / Hardware.
5. Frequency response of BP and BR filters: Simulation /Hardware.
6. Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form.
7. Determination of Laplace transform and Inverse Laplace transform using MATLAB.
8. Amplitude and Phase spectrum analysis of different signals using MATLAB.
9. Verification of Network theorem using SPICE

PAPER NAME : TECHNICAL REPORT WRITING & LANGUAGE LABORATORY PRACTICE
PAPER CODE: HU 381
CONTACT: 1L+2P
CREDIT : 2

Guidelines for Course Execution:

Objectives of this Course: This course has been designed:
1. To inculcate a sense of confidence in the students.
2. To help them become good communicators both socially and professionally.
3. To assist them to enhance their power of Technical Communication.

Detailed Course Outlines:
A. Technical Report Writing : 2L+6P

1. Report Types (Organizational / Commercial / Business / Project)
2. Report Format & Organization of Writing Materials
3. Report Writing (Practice Sessions & Workshops)
Syllabus for B.Tech (Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were
admitted in Academic Session 2010-2011)

B. Language Laboratory Practice

1. Introductory Lecture to help the students get a clear idea of Technical Communication & the need of Language Laboratory
 Practice Sessions 2L
 2. Conversation Practice Sessions: (To be done as real life interactions) 2L+4P
 a) Training the students by using Language Lab Device/Recommended Texts/cassettes/cd’s to get their Listening Skill & Speaking Skill honed
 b) Introducing Role Play & honing over all Communicative Competence
 3. Group Discussion Sessions: 2L+6P
 a) Teaching Strategies of Group Discussion
 b) Introducing Different Models & Topics of Group Discussion
 c) Exploring Live/Recorded GD Sessions for mending students’ attitude/approach & for taking remedial measure
 Interview Sessions; 2L+6P
 a) Training students to face Job Interviews confidently and successfully
 b) Arranging Mock Interviews and Practice Sessions for integrating Listening Skill with Speaking Skill in a formal situation for effective communication

4. Presentation: 2L+6P
 a) Teaching Presentation as a skill
 b) Strategies and Standard Practices of Individual/Group Presentation
 c) Media & Means of Presentation: OHP/POWER POINT/ Other Audio-Visual Aids

5. Competitive Examination: 2L+2P
 a) Making the students aware of Provincial/National/International Competitive Examinations
 b) Strategies/Tactics for success in Competitive Examinations
 c) SWOT Analysis and its Application in fixing Target

Books – Recommended:
Nira Konar: English Language Laboratory: A Comprehensive Manual PHI Learning, 2011

References:
Adrian Duff et. al. (ed.): Cambridge Skills for Fluency
 A) Speaking (Levels 1-4 Audio Cassettes/Handbooks)
 B) Listening (Levels 1-4 Audio Cassettes/Handbooks)
 Cambridge University Press 1998
Mark Hancock: English Pronunciation in Use 4 Audio Cassettes CD’S OUP 2004
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

IV Semester

Theory

VALUES & ETHICS IN PROFESSION

HU-401
Contracts: 3L
Credits: 3

Science, Technology and Engineering as knowledge and as Social and Professional Activities

Effects of Technological Growth:

Rapid Technological growth and depletion of resources, Reports of the Club of Rome. Limits of growth: sustainable development
Energy Crisis: Renewable Energy Resources
Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations, Environmental Ethics
Appropriate Technology Movement of Schumacher; later developments
Technology and developing notions. Problems of Technology transfer, Technology assessment impact analysis.

Ethics of Profession:

Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics. Whistle blowing and beyond, Case studies.

Profession and Human Values:

Values Crisis in contemporary society
Nature of values: Value Spectrum of a good life
Psychological values: Integrated personality; mental health
Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution.
Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity
Moral and ethical values: Nature of moral judgements; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility.

Books:

Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

PH (EE)-401 4: Physics

Contacts: 3L + 1T

Credits: 4

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Quantum mechanics:</td>
<td>6</td>
</tr>
<tr>
<td>• Generalized co-ordinates, Lagrange’s equation of motion and Lagrangian, generalized force potential, moment and energy, Hamilton’s Equation of motion and Hamiltonian. Properties of Hamilton and Hamilton’s equation of motion.</td>
<td></td>
</tr>
<tr>
<td>• Concept of probability and probability density, operator, Commutator, Formulation of quantum mechanics and Basic postulates, Operator correspondence, Time dependent Schrödinger’s equation, formulation of time independent Schrödinger’s equation by method of separation of variables, Physical interpretation of wave function Ψ (normalization and probability interpretation), Expectation values, Application of Schrödinger equation-Particle in an infinite square well potential (1-D and 3-D potential well), Discussion on degenerate levels.</td>
<td>10</td>
</tr>
<tr>
<td>Module-II</td>
<td></td>
</tr>
<tr>
<td>Statistical mechanics:</td>
<td></td>
</tr>
<tr>
<td>• Concept of energy levels and energy states. Microstates, Macrostates and thermodynamic probability, equilibrium macrostate. MB, FD, BE statistics (no deduction necessary), fermions, bosons (definitions in terms of spin, examples), physical significance and application, classical limits of quantum statistics. Fermi distribution at zero and non –zero temperature.</td>
<td>4</td>
</tr>
<tr>
<td>Module-III</td>
<td></td>
</tr>
<tr>
<td>Dielectric Properties:</td>
<td></td>
</tr>
<tr>
<td>• Dielectric Material: Concept of Polarization, the relation between D, E and P, Polarizability, Electronic, Ionic, Orientation & Space charge polarization, behavior of Dielectric under alternating field, Dielectric losses.</td>
<td>3</td>
</tr>
<tr>
<td>The Magnetic properties:</td>
<td></td>
</tr>
<tr>
<td>• Magnetization M, relation between B, H & M. Bohr megneton, Diamagnetism-Larmor frequency & susceptibility, Curie law, Weiss molecular field theory & Curie-Weiss law, Hysteresis loss, Antiferromagnetism, Ferromagnetism & Ferrites (analytative).</td>
<td>4</td>
</tr>
<tr>
<td>Module-IV</td>
<td></td>
</tr>
<tr>
<td>Crystal structure</td>
<td></td>
</tr>
<tr>
<td>• Crystal structure- Bravais lattice, Miller indices</td>
<td>1</td>
</tr>
<tr>
<td>• Crystal diffraction (qualitative), Bragg's law and reciprocal lattice, Brillouin zone. (Qualitative description)</td>
<td>2</td>
</tr>
<tr>
<td>• Free electron theory of metal – calculation of Fermi energy, density of states.</td>
<td>3</td>
</tr>
<tr>
<td>• Band theory of solids- Bloch theorem, Kronig Penny model.</td>
<td></td>
</tr>
<tr>
<td>• Electronic conduction in solids-Drude’s theory, Boltzmann equation, Wiedemann Frantz law.</td>
<td></td>
</tr>
<tr>
<td>• Semiconductor-Band structure, concept of electron and holes, Fermi level, density of states.</td>
<td></td>
</tr>
</tbody>
</table>
Text Books:
1. Perspectives of Modern Physics: A. Baiser
2. Modern Physics and Quantum Mechanics E.E. Anderson
5. Classical Mechanics: a) A.K. Roychoudhuri
 b) R.G. Takwal & P.S. Puranic
6. Quantum Mechanics: a) Eisberg & Resnic
 b) A.K. Ghatak & S. Lokanathan
 c) S.N. Ghoshal
7. Statistical Mechanics and Thermal Physics: a) Sears and Salinger
 b) Avijit Lahiri
 c) Evelyn Guha
8. Solid State Physics: a) A.J. Dekker
 b) C. Kittel
 c) Ashcroft & Mermin
 d) S.O. Pillai

ME(EE)411: Thermal Power Engineering

Contacts : 3L
Credits : 3

Text:
1. P.K.Nag- Engineering Thermodynamics – TMH ,2/e
2. P K Nag- Power Plant Engg. - TMH Pub

Reference:
1. Cengel --- Thermodynamics , 3/e ,TMH
2. Et-Wakil—Power Plant Engineering , MH
CH401: Basic Environmental Engineering & Elementary Biology

Contacts : 3L
Credits : 3

General

Basic ideas of environment, basic concepts, man, society & environment, their interrelationship.

1L

Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development.

2L

Materials balance: Steady state conservation system, steady state system with non conservative pollutants, step function.

1L

Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering.

2L

Ecology

Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function.

1L

Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.

2L

Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].

1L

Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.

2L

Air pollution and control

Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause.

1L
Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems. 1L

Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth’s heat budget. 1L

Lapse rate: Ambient lapse rate, Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion). 2L

Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model. 2L

Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant.

Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. 2L

Smog, Photochemical smog and London smog.

Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green house gases, effect of ozone modification. 1L

Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP, cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). 1L

Water Pollution and Control

Hydrosphere, Hydrological cycle and Natural water.

Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. 2L

River/Lake/ground water pollution: River: DO, 5 day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. 2L

Lake: Eutrophication [Definition, source and effect]. 1L

Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) 1L

Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening]
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition.

2L

Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic

1L

Land Pollution

Lithosphere; Internal structure of earth, rock and soil

1L

Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling.

Solid waste management and control (hazardous and biomedical waste).

2L

Noise Pollution

Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise]

1L

Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, \(L_{10} \) (18 hr Index), \(L_{dn} \).

Noise pollution control.

1L

Environmental Management:

Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol.

2L

References/Books

ELECTRIC MACHINE-I

EE-401

Credit: 4

3L+1T

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>• Electromechanical Energy Conversion Principle, Singly Excited Magnetic System and Doubly Excited Magnetic system. Physical concept of torque production; Electromagnetic torque and Reluctance torque.</td>
<td>2</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech (Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Module-II

DC Machines:
- EMF generated in the armature. Methods of Excitation, Armature reaction & its effect in the performance, Methods of decreasing the effects of Armature reaction, Effect of Brush shift.
- Commutation process, Resistance commutation, Delayed commutation, Voltage commutation, Improvement of Commutation.
- Operating Characteristics of DC Generators: Separately Excited generators, Shunt Generators, Series Generators and Compound Generators.
- Torque equation of D.C motor, Operating Characteristics of Shunt, Series & Compound motors.
- Losses and efficiency of DC machines, Hopkinson’s and Swinburne’s test.
- D.C Machine application: Generator application, Motor application

Module-III

3-Phase Induction machine:
- Induction motor as a Transformer, Flux and MMF phasors in Induction motors, Equivalent circuit, Performance equations, Induction motor phasor diagram
- Toque-slip characteristic, Power slip characteristic, Determination of equivalent circuit parameters.
- Methods of starting of squirrel Cage and Wound rotor Motors.
- Speed control of Induction motor
- Polarity Test, Application of Polyphase Induction motor

Module-IV

3-Phase Transformer:
- Determination of polarity and connections (star/star, star/delta, delta/star, star/zigzag, delta/zigzag, open delta), Phasor groups.
- Effect of unbalanced loading, Production of Harmonics in Transformer and its suppression,
- 3 phase to 2 phase transformation, Scott connection, 3 phase to 6 phase connections, Double star and Double delta,
- 3 winding transformer: Parameter estimation, application,
- Parallel operation of Transformers, Introduction to Tap changing transformer and its function.
- Special Transformers: Potential transformer, Current transformer, Pulse transformer, Audio frequency transformer, Grounding transformer, Pulse transformer.

Numerical Problems to be solved in the tutorial classes.

Text Books:
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Reference Books:
2. Electrical Machines, R.K. Srivastava, Cengage Learning

ELECTRICAL & ELECTRONIC MEASUREMENT

EE-402 Credit: 3 3L

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Measurements:</td>
<td>3</td>
</tr>
<tr>
<td>• Method of measurement, Measurement system, Classification of instruments, Definition of accuracy, Precision, Resolution, Speed of response, Error in measurement, Classification of errors, loading effect due to shunt and series connected instruments.</td>
<td></td>
</tr>
<tr>
<td>Analog meters:</td>
<td>3</td>
</tr>
<tr>
<td>• General features, Construction, Principle of operation and torque equation of Moving coil, Moving iron, Electrodynamometer, Induction instruments</td>
<td></td>
</tr>
<tr>
<td>• Principle of operation of the Electrostatic, Thermoelectric, Rectifier type instruments, Extension of instrument ranges and multipliers.</td>
<td>3</td>
</tr>
</tbody>
</table>

Module-II | 4 |
Instrument transformer:	4
• Disadvantage of shunt and multipliers, Advantage of Instrument transformers, Principle of operation of Current & Potential transformer, errors.	
Measurement of Power:	3
• Principle of operation of Electrodynamic & Induction type wattmeter. Wattmeter errors.	
Measurement of resistance:	4
• Measurement of medium, low and high resistances, Megger.	
Syllabus for B.Tech (Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Module-III

<table>
<thead>
<tr>
<th>Measurement of Energy:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construction, theory and application of AC energy meter, testing of energy meters.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Principle of operation and application of Crompton’s DC potentiometer, Polar and Co-ordinate type AC potentiometer. Application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC Bridges:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measurement of Inductance, Capacitance and frequency by AC bridges.</td>
<td></td>
</tr>
</tbody>
</table>

Module-IV

<table>
<thead>
<tr>
<th>Cathode ray oscilloscope (CRO):</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic Instruments:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advantages of digital meter over analog meters, Digital voltmeter, Resolution and sensitivity of digital meters, Digital multimeter, Digital frequency meter, Signal generator.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensors & Transducers:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement.</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Problems to be solved in the tutorial classes.

Text Books:

Reference Books:
Syllabus for B.Tech(Electrical Engineering) Second Year

Revised Syllabus of B.Tech in EE (To be followed from the academic session, July 2011, i.e. for the students who were admitted in Academic Session 2010-2011)

Practical

Physics Lab-2
Code:PH(EE)491 PH-491
Contacts: (3P)
Credit: (2)

1. Determination of dielectric constant of a given dielectric material.
2. Determination of thermo electric power at a certain temperature of a given thermocouple.
3. Determination of specific charge (e/m) of electron by J.J. Thompson’s method.
4. Determination of Planck constant using photocell.
5. Determination of Landé’g factor using Electron spin resonance spectrometer.
6. Determination of Stefan’s radiation constant.
7. Verification of Bohr’s atomic orbital theory through Frank-Hertz experiment.
10. Determination of Band gap of semiconductor.
11. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

ME(EE)481: Thermal Power Engineering Lab
Contacts : 3L
Credits : 3

1. Study of Cut Models – Boilers IC Engines
 - Lanchashire Boiler
 - Bahcock & Willcox Boiler
 - Cochran Boiler
 - Vertical Tubular Boiler
 - Locomotive Boiler
 - 4S Diesel Engine
 - 4S Petrol Engine
 - 2S Petrol Engine

2. Load Test on 4 Stroke Petrol Engine & Diesel Engine by Electrical Load Box.
3. Load Test on 4 Stroke Diesel Engine by Rope Brake Dynamometer.
6. To find the Calorific Value of Diesel Fuel & Coal by Bomb Calorimeter.
7. To find the Flash Point & Fire Point of Petrol & Diesel Fuel.

8. To find the Cloud Point & Pour Point of Petrol & Diesel Fuel.

9. To find Carbon Particle Percentage in Diesel Engine Exhaust Smoke by Smokemeter and trace the BHP Vs. % Carbon Curve.

11. To find out the Boiler performance – Boiler efficiency & Steam evaporation rate.

12. To visit a Thermal Power Station & study of the followings:
 a) Boiler b) Steam pipe c) Furnace
 d) Economizer e) Preheater f) Steam turbines
 g) Alternator h) Water treatment plant i) E. S. P.

ELECTRIC MACHINE LABORATORY-I

<table>
<thead>
<tr>
<th>Code</th>
<th>Credit</th>
<th>3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-491</td>
<td>2</td>
<td>3P</td>
</tr>
</tbody>
</table>

1. Study of the characteristics of a separately excited DC generator.
2. Study of the characteristics of a DC motor
3. Study of methods of speed control of DC motor
4. Study of the characteristics of a compound DC generator (short shunt).
7. Polarity test on a single phase transformer & study of different connections of three phase transformer.

Reference Books:

ELECTRIC AND ELECTRONIC MEASUREMENT LABORATORY

<table>
<thead>
<tr>
<th>Code</th>
<th>Credit</th>
<th>3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-492</td>
<td>2</td>
<td>3P</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and Rectifier type of instruments, Oscilloscope and Digital multimeter.
2. Calibrate moving iron and electrodynamometer type ammeter/voltmeter by potentiometer.
3. Calibrate dynamometer type wattmeter by potentiometer.
4. Calibrate AC energy meter.
10. Measurement of capacitance by De Sauty Bridge.